Package: xIdiff (via r-universe)
November 1, 2024

Title Compare excel sheets
Version 0.0.0.9000

Description " xIdiff" provides tools to compare excel sheets, broadly
inspired by " " diff"-type functions. Provided functions can read
sheets of two excel files and produce a third file that
highlights cells that have changed. In the case of numeric
changes, the direction of change is highlighted. These tools do
not account for structural changes in the sheets (e.g., the
addition of a column), but are useful in tracking changed
values in tables or parameter files. Utility functions
developed to streamline formatting output files are also more
broadly useful in programmatically formatting excel files using
openxIsx.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Imports cli, dplyr, methods, openxlsx, purrr, readxl, rlang
Repository https://framverse.r-universe.dev

RemoteUrl https://github.com/cbedwards-dfw/x1diff
RemoteRef HEAD

RemoteSha ec0e55068203cc9370f4edc266ee0ba00899a423

Contents

add_cell_borders . . . . . . . .. e

add_change

d_formats . . . . . . . e

cells_stylize . . . . . . . . . e e e
cell_range_translate . . . . . . . . . ...

excel diff
sheet_comp



2 add_cell borders

Index 9

add_cell_borders Adds cell borders to openxlsx spreadsheet

Description

When calling sheet_diff(), creating a new workbook for the diff contents, and then coloring
to highlight changed cells, the original spreadsheet formatting is lost. To facilitate interpretting
the diff, it can be useful to recreate the major components of the original formatting, especially cell
borders. This function adds cell borders, and is designed for ease of use when replicating formatting
from the original excel file. Blocks of cells to give borders to can be specified in the original
excel format (e.g. "A1:D5"). For only outside borders around each block (default), use argument
every.cell = FALSE. To add all the cell borders within each block to generate a grid appearance,
set every.cell = TRUE. Note that non-border formatting of each cell will not be maintained, but
border formatting will be overwritten. When adding thin boundaries between inner cells and a
thick outer border for a block of cells, first use add_cell_borders to with every.cell = TRUE,
and appropriate border arguments (usually border. thickness = "thin") and then use again with
every.cell = FALSE and appropriate border arguments (usually border. thickness = "medium"”).

Usage

add_cell_borders(
wb,
sheet,
block.ranges,
sheet.start = "A1",
every.cell = FALSE,
border.col = "black”,

border.thickness = "medium”
)
Arguments
wb openxlsx workbook object
sheet character corresponding to sheet name of openxlsx workbook object wb.

block.ranges One or more cell ranges specified in excel format (e.g. c("A1:D5, "B6", "A8:D8"))

sheet.start Optional. If wb$sheet corresponds to an excel sheet in which the wb$sheet
entries were read starting on a cell other than "A1" (e.g. readxl: :read_excel
with range specified or skip provided), provide the top left cell that was read into
R in order to handle the offsetting, so that you can specify cell ranges based on
the original excel file.

every.cell Do we want borders around each individual cell in each cell block (TRUE), or
just around the outer edges of the block (FALSE). Defaults to FALSE.

border.col Color for border. See ?openxlsx: :createStyle for details. Defaults to "black".



add_changed_formats 3

border. thickness

Thickness for border. See ?openxlsx::createStyle for details. Common
choices: "thin", "thick".

add_changed_formats Format openxlsx worksheet based on changes

Description

Highlights cells that changed, coloring differently for increasing, decreasing, and non-numeric cells.
Typically used on a worksheet that contains the $sheet.diff dataframe from the same sheet com-
parison as provided in the cur.sheet argument. In some cases it may be useful to define custom
color schemes (e.g., if increasing numbers are good and decreasing numbers are bad, you may
want green and red foregrounds for those types of changes). Individual styles can be provided with
optional arguments see ?openxlsx: :createStyle for options in defining styles.

Usage

add_changed_formats(
wb,
cur.sheet,
sheet.comp,
rows.invert = NULL,
cols.invert = NULL,
df.invert = NULL,
nofillStyle = NULL,
changeStyle = NULL,
posStyle = NULL,
negStyle = NULL

)

Arguments
wb openxlsx workbook to make on which to make changes.
cur.sheet sheet name in openxlsx workbook on which to make changes.
sheet.comp list of comparison dataframes generated by sheet_comp()

rows.invert

cols.invert

Optional vector of row numbers to invert color scheme for increase vs decrease.

Optional vector of column numbers to invert color scheme for increase vs de-
crease.

df.invert Optional data frame with $row and $col entries to indentify individual cells to
invert color schemes for increase vs decrease. Defaults to NULL.

nofillStyle Optional openxlsx style object for cells with no changes flagged. Default has
black text, white foreground. Create custom style with openxlsx: :createStyle().

changeStyle As nofillStyle, but for non-numeric cells with changed values. Default has

black text, light purple forecround.



4 cells_stylize

posStyle As nofillStyle, but for numeric cells that increase in value. Default has black
text, light coral foreground.

negStyle As nofillStyle, but for numeric cells that decrease in value. Default has black
text, light green foreground.

Details

In some cases it may make sense to reverse the color scheme of numeric changes for individual
rows, columns, or cells (e.g., when scanning fishery model outputs, increasing fish escapement
and decreasing fish exploitation rates logically should both show the same color. Similarly, in-
creasing profits and decreasing costs logically should both show the same color.). Optional argu-
ments rows. invert, cols.invert, and df.invert allow you to specify individual regions of the
dataframe to reverse the color scheme.

cells_stylize Apply style to worksheet based on one or more excel-style cell ranges

Description

Apply style to worksheet based on one or more excel-style cell ranges

Usage

cells_stylize(wb, sheet, style, block.ranges, stack = TRUE)

Arguments
wb openxlsx workbook object
sheet character corresponding to sheet name of openxlsx workbook object wb.
style openxlsx cell style, created with openxlsx: :createStyle(). This caninclude

text size, bolding or italics, text wrapping, foreground color, text color, etc. See
?openxlsx: :createStyle for details.

block.ranges One or more cell ranges specified in excel format (e.g. c("A1:D5, "B6", "A8:D8"))

stack Should style be appended to existing styles (TRUE) or replace existing styles
(FALSE). Defaults to TRUE.



cell_range_translate 5

cell_range_translate Translates from excel cell address to rows and columns

Description

Translates from excel cell address to rows and columns

Usage

cell_range_translate(x, expand = TRUE, start = "A1")

Arguments
X Single string of individual cell or cell range (e.g. "D6" or "D6:AC8")
expand If TRUE (default), provides the row and column for all cells in the range. If
False, provides just the row and column of the start and end cells.
start Optional argument to account for offset when matching cells in an excel file to
a dataframe when the dataframe was generated by reading the excel file starting
at a location other than "A1".
Value

dataframe of addresses for each cell in the range, where $row gives the row number and $col gives
the column number.

Examples

cell_range_translate("D6")
cell_range_translate("A2:H3")

excel_diff Minimal spreadsheet comparison function

Description

Compares a single sheet between two files, supports providing additional formatting in the form of
the optional extra_format_fun argument. For more complex use cases (e.g., multiple sheet, pre-
comparison formatting to compare only specific regions, etc) excel_diff can be used as a simple
template for writing your own function.



6 excel _diff

Usage

excel_diff(
file.1,
file.2,
results.name,
sheet.name,
extra_format_fun = NULL,

)

Arguments
file.1 Filename (including path) for first file to compare
file.2 Filename (including path) for second file to compare

results.name  Name (including path) for fille to save comparison to. Must end in ".xIsx"

sheet.name character string of sheet to compare (must be present in both files)
extra_format_fun
Optional function to apply additional formatting, allowing users to specify ad-
ditional calls of addStyle() (or other openxslx functions, like setting column
width). First argument must be the workbook object this function makes changes
to; second argument must be the name of the worksheet this function makes
changes to

Additional arguments passed to extra_format_fun

Examples

## Not run:
filename.1 = "Documents/WDFW FRAM team work/NOF material/NOF 2024/FRAM/Chin1124.x1sx"
filename.2 = "Documents/WDFW FRAM team work/NOF material/NOF 2024/NOF 2/Chin2524.x1lsx"

excel_diff(file.1 = filename.1,
file.2 = filename.?2,
results.name = "Documents/WDFW FRAM team work/NOF material/NOF 2024/test1.x1lsx”,
sheet.name = "ER_ESC_Overview_New"

)

## create function to add in some additional formatting:
extra_form_fun = function(wb, sheet){
## add bold and increased size for the first two rows.
openxlsx::addStyle(wb, sheet,
style = openxlsx::createStyle(fontSize = 16, textDecoration = "Bold"),
rows = 1:2, cols = 1:8, gridExpand = TRUE,
stack = TRUE)
## add thin inner cell borders
add_cell_borders(wb, sheet,
block.ranges = c("B3:H34") )
## add thick outer borders
add_cell_borders(wb, sheet,
block.ranges = c("A2", "B1:D2", "E1:H2",



sheet_comp 7

"A3:A34", "B3:D34", "E3:H34",
"D36:H37"),
border.thickness = "medium")

}

excel_diff(file.1 = filename.1,
file.2 = filename.?2,
results.name = "Documents/WDFW FRAM team work/NOF material/NOF 2024/test2.x1lsx"”,
sheet.name = "ER_ESC_Overview_New",
extra_format_fun = extra_form_fun

)

## End(Not run)

sheet_comp Compare two dataframes of spreadsheets

Description

Primary funtion for x1diff package. When cell values change between dataframe t1 and dataframe
t2, the corresponding $sheetdiff entry will show [the first value] --> [the second value]. Note
that because these changes are presenting as characters, changes in numbers with many digits can
produce difficult-to-read cells. The digits.signif can be used to determine how many significant
digits should be presented in the "arrow" cells.

Usage

sheet_comp(t1, t2, digits.signif = 4)

Arguments
t1 First dataframe
t2 Second dataframe, same dimensions as first.

digits.signif When flagging changes, comparison is presented in character form. How many
significant digits do we present for numerical entries? Numeric, defaults to 4.

Value

List of comparison data frames, including logical matrices used in formatting cells to highlight
changes.

* $sheet.diff: cell entries for comparison
* $mat.changed logical matrix where TRUE corresponds to a cell that changed

* $mat.diff.decrease: logical matrix where TRUE corresponds to a cell of numeric values that
decreased = mat.diff.increase: as above, but for increases.



8 sheet_comp

Examples

## Not run:

## using palmerpenguins data to simulate spreadsheets
library(palmerpenguins)

t1 = t2 = head(penguins)

## change island variable to characters for easier modification
t2%$island = t1$island = as.character(t1$island)

## change several entries in the second version

t2%$island[3] = "Scotland”

t2$flipper_length_mm[1] = 18

sheet_comp(tl, t2, digits.signif = 4)

## End(Not run)



Index

add_cell_borders, 2
add_changed_formats, 3

cell_range_translate, 5
cells_stylize, 4

excel_diff, 5

sheet_comp, 7



	add_cell_borders
	add_changed_formats
	cells_stylize
	cell_range_translate
	excel_diff
	sheet_comp
	Index

